Topic 4 - Data analytics, AI, and Computational Science

Chairs

  • Erhard Rahm, Leipzig University, Germany
  • Jeyan Thiyagalingam, Rutherford Appleton Laboratory, UK

Program Committee

  • Ashiq Anjum, University of Leicester, UK
  • Achim Basermann, German Aerospace Center (DLR), Simulation and Software Technology
  • Matthias Boehm, TU Berlin
  • José M Cecilia, Universitat Politècnica de València
  • Alexandru Costan, INRIA
  • Hao Dai, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
  • Reza Farahani, University of Klagenfurt
  • Rafael Ferreira da Silva, Oak Ridge National Laboratory
  • Sukhpal Singh Gill, Queen Mary University of London
  • Ligang He, The University of Warwick
  • Shadi Ibrahim, Inria, Rennes Bretagne Atlantique Research Center
  • Odej Kao, TU Berlin
  • Hideyuki Kawashima, Keio University
  • Youngjae Kim, Sogang University
  • Dalibor Klusacek, CESNET, Brno, Czech Republic
  • Michael Kuhn, Otto von Guericke University Magdeburg
  • Manolis Marazakis, Instutute of Computer Science, FORTH
  • Jorji Nonaka, RIKEN Center for Computational Science
  • Ramon Nou, Universitat Politècnica de Catalunya
  • Dana Petcu, West University of Timisoara
  • M. Mustafa Rafique, Rochester Institute of Technology
  • Jože M. Rožanec, Jožef Stefan Institute
  • Rizos Sakellariou, The University of Manchester
  • Josef Spillner, Zurich University of Applied Sciences
  • Osamu Tatebe, University of Tsukuba
  • Douglas Thain, University of Notre Dame
  • Rafael Tolosana-Calasanz, Universidad de Zaragoza
  • Massimo Torquati, University of Pisa
  • Feiyi Wang, Oak Ridge National Laboratory
  • Yang Wang, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
     

Focus

  • Artificial Intelligence in the IoT-Edge-Cloud continuum  
  • Data management in Edge devices and the computing continuum        
  • Innovative applications and case studies      
  • Large-scale data processing applications in science, engineering, business and healthcare        
  • Emerging trends for computing, machine learning, approximate computing, and quantum computing.        
  • Parallel, replicated, and highly-available distributed databases
  • Scientific data analytics (Big Data or HPC-based approaches)
  • Middleware for processing large-scale data
  • Programming models for parallel and distributed data analytics            
  • Workflow management for data analytics    
  • Coupling HPC simulations with in-situ data analysis      
  • Parallel data visualization          
  • Distributed and parallel transaction, query processing and information retrieval            
  • Internet-scale data-intensive applications      
  • Sensor network data management    
  • Data-intensive computing infrastructures  
  • Parallel data streaming and data stream mining        
  • New storage hierarchies in distributed data systems            
  • Parallel and distributed machine learning, knowledge discovery and data mining          
  • Privacy and trust in parallel and distributed data management and analytics systems    
  • IoT data management and analytics            
  • Parallel and distributed data science applications      
  • Data analysis in cloud and serverless models